

Himawari-8 current applications and future development

Hiroshi SUZUE and Yasuhiko SUMIDA

Meteorological Satellite Center Japan Meteorological Agency

Outline

- Overview of Himawari-8/9 AHI and its products
 - ✓ Improved Resolutions
 - ✓ Advantages of High Observation Frequency
 - ✓ Operational Products developed at MSC/JMA
- Detection of Rapidly Developing Cumulus Area (RDCA)
 - ✓ Algorithm
 - ✓ Case Studies
- Future Plans
- Summary

Outline

- Overview of Himawari-8/9 and their products
 - ✓ Improved Resolutions
 - ✓ Advantages of High Observation Frequency
 - ✓ Operational Products developed at MSC/JMA
- Detection of Rapidly Developing Cumulus Area
 - ✓ Algorithm
 - √ Case Studies
- > Future Plans
- > Summary

Himawari-8 began operation at 02:00 UTC on 7th July 2015.

Outline of Himawari-8/9

Geostationary position	Around 140.7° E		
Attitude control	3-axis attitude-controlled geostationary satellite		
	1) Raw observation data transmission Ka-band, 18.1 - 18.4 GHz (downlink)		
Communication	2) DCS International channel 402.0 - 402.1 MHz (uplink) Domestic channel 402.1 - 402.4 MHz (uplink) Transmission to ground segments Ka-band, 18.1 - 18.4 GHz (downlink)		
	3) Telemetry and command Ku-band, 12.2 - 12.75 GHz (downlink) 13.75 - 14.5 GHz (uplink)		

Himawari-8 began operation on 7 July 2015, replacing the previous MTSAT-2 operational satellite

Improved Resolutions

At sub-satellite point

VIS 1 km IR 4 km

MTSAT-1R/2

VIS 0.5/1 km IR 2 km

Himawari-8/9

Temporal

Observation Frequency

MTSAT-1R/2

Spectral Bands

cf. MTSAT-2 Bands

VIS 0.68 μm

IR4 3.7 μm

IR3 6.8 μm

IR1 10.8 μm

IR2 12.0 μm

Himawari-8/9 Imager (AHI)

Band Spatial Resolution		Central Physical Properties			
1	Visible	1 km	0.47 μm	vegetation, aerosol	
2			0.51 µm	vegetation, aerosol	
3		0.5 km	0.64 µm	low cloud, fog	
4		1 km	0.86 µm	vegetation, aerosol	
5	Near Infrared		0.1	1.6 µm	cloud phase
6		nirared 2 km	2.3 µm	particle size	
7	Infrared		3.9 µm	low cloud, fog, forest fire	
8			6.2 µm	mid- and upper-level moisture	
9			6.9 µm	mid-level moisture	
10			7.3 µm	mid- and lower-level moisture	
11		2 1.000	8.6 µm	cloud phase, SO2	
12		nfrared 2 km	9.6 µm	ozone content	
13			10.4 μm	cloud imagery, information of cloud top	
14			11.2 μm	cloud imagery, sea surface temperature	
15			12.4 μm	cloud imagery, sea surface temperature	
16			13.3 µm	cloud top height	

3 Visible Bands

Addition of NIR Bands

Increase of WV Bands

Increase of TIR Bands

More Flexible Regional Observation

> Several types of regional observations can be performed during 10 minutes of full-disk observation.

Observation modes and intervals

July 9-10, 2015

Targeted Area obs. 2.5 min.

,

Full Disk Obs. 10 min.

Himawari-8 Level-2/3 Products

Fundamental Cloud Product

- Basically referring to the NWC-SAF's ATBDs for MSG/SEVIRI
- Adapted to AHI by JMA (in-house codes at JMA)
- ➤ For other AHI Level-2/3 products developed at MSC/JMA

Derived parameters	Cloud Mask, Cloud Phase/Type, Cloud Top Height (Including Top Press. and Top Temp.)	
Projection Normalized Geostationary Projection (same as HSD)		
Spatial resolution	2km@SSP (same as HSD for infrared bands)	
Temporal resolution	Hourly	

- Produced from FCP via projection conversion
- Reproduced Cloud Type for cloud monitoring
- Provided to foreign NMHSs as well as domestic users

Derived parameters	Cloud Mask, Cloud Type, Cloud Top Height, Snow Ice Mask	
Projection	Lon/Lat grid	
Spatial resolution	0.02 degree x 0.02 degree	
Temporal resolution	Hourly	

Clear Sky Radiances (CSRs)

- Area averaged clear sky radiance and brightness temperature
- Provided to NWP users
- Specifications:

MSC/JMA

- All IR bands (3.9, 6.2, 6.9, 7.3, 8.6, 9.6, 10.4, 11.2, 12.4, 13.3 μm)
- Full disk, Hourly produced
- Spatial resolution (size of area for averaging): 16 x 16 pixel (IR)

(32 x 32 km @SSP)

Band #8 (6.2 um)

Band #9 (6.9 um)

Band #10 (7.3 um)

300

320 [K]

MSC/JMA

Atmospheric Motion Vectors (AMVs)

- A new algorithm was developed for AMVs detection based on an optimal estimation method
- Provided to NWP users

MTSAT-2 AMVs (QI > 60)

Himawari-8 AMVs (QI > 60)

Colder color: upper level wind

Warmer color: lower level wind

Detection of Rapidly Developing Cumulus Area

Outline

- > Overview of Himawari-8/9 and their products
 - ✓ Improved Resolutions
 - ✓ Advantages of High Observation Frequency
 - ✓ Operational Products developed at MSC/JMA
- Detection of Rapidly Developing Cumulus Area
 - ✓ Algorithm
 - ✓ Case Studies
- > Future Plans
- > Summary

MSC/JMA

Developing Cumulus and Radar Echo

Chisholm, A. J. and Renick, J. H. (1972) [traced and added]

If we can detect cumulus that is growing rapidly, we get to know thunderstorm coming earlier than the radar!

RDCA Product

RDCA Product

Rapidly Developing Cumulus Area (RDCA)

- ✓ Developing cumulous
- ✓ Current/Future disturbance is expected

Cumulonimbus Area

- ✓ A round top, except for anvil cirrus
- ✓ Strong upward flow is expected

Mid/Low Cloud Unknown Area

- ✓ Anvil cirrus
- ✓ Anvil cirrus hides clouds below

Concept of RDCA Detection

Developing cumulus →

- Cloud top is higher
 Brightness temperature is getting low.
- Roughness of cloud top increases
 Contrast between light and dark is getting clear.
 e.g. Difference of reflective intensity is increasing in visible image.
- Cloud microphysical parameters change
 Ice particles are produced near cloud top

0.10 0.15

10.8 BT : Min - Mean (K)

Three class parameters; ○:<250K, ○:250~273.15K, ○:>273.15K

Coefficients a_i are determined by the logistic regression model when lightning occurs within 60 minutes after observed variable x_i .

parameters

=> High "P" area is decided as RDCA

27 July 2016 21

(forecast)

	Detection Parameter	Main Objective	
Only	B03(0.64μm):Max-Ave.* ²		
day time	B03:Standad Deviation* ²	Cloud Top Roughness Detection	
	B13(10.4μm):MinAve.		
	B13:Standard Deviation		
	B16(13.3µm)-B13		One Scene
	B08(6.2μm)-B13	Ice Cloud Detection	Parameters
New	B15(12.4µm)-B13		
INGW	B11(8.6µm)-B13		
	B10(7.3μm)-B08	Water Vapor Detection above	
	D 10(7.5μΠ)- D 00	Cloud Top	
Only	Temporal Variation of		
day time	B03 Average Value* ²	Developing Cloud Detection	
	Temporal Variation of		
	B13 Average Value		Time Change
	Temporal Variation of		Parameters
New	B11-B13 Average Value	Developing Ice Particle	
	1	Detection	
27 July 2016	B15-B13 Average Value		22

Case Study (1)

- ➤ Early detection of convective cloud with lightning
- → RDCA product can detect developing cumulus earlier than a radar echo.

Case Study (2)

- ➤ The isolated Cb cloud can be detected with high accuracy by RDCA product (A: heat lightning area)
- ➤ The detection accuracy is low for middle or high clouds that shield low clouds (B: typhoon area)

- Case Study (3)
- > False detection due to passing upper clouds
- → Brightness temperature seems to decrease rapidly because upper clouds pass over lower clouds

On 6 June 2016

Case Study (4)

- ➤ Decrease in the number of the RDCA detection at night
- → Detection parameters of visible band are not used at night

Outline

- > Overview of Himawari-8/9 and their products
 - ✓ Improved Resolutions
 - ✓ Advantages of High Observation Frequency
 - ✓ Operational Products developed at MSC/JMA
- > Detection of Rapidly Developing Cumulus Area
 - ✓ Algorithm
 - √ Case Studies
- Future Plans
- > Summary

Future Plan

➤ Domain extension of the RDCA product using Himawari-8/AHI Full Disk observation data for safety and air traffic control over Asia and Western Pacific regions

Sample of extended domain RDCA product

Future Plan

Improvement of the RDCA detection algorithm (e.g. cloud tracking)

Sample of cloud object tracking

Outline

- > Overview of Himawari-8/9 and their products
 - ✓ Improved Resolutions
 - ✓ Advantages of High Observation Frequency
 - ✓ Operational Products developed at MSC/JMA
- Detection of Rapidly Developing Cumulus Area
 - ✓ Algorithm
 - √ Case Study
- > Future Plans
- Summary

Summary

Improved Observation Function by Himawari-8/AHI

- ✓ High-resolution and high-frequency observation using multiple bands enables to capture server weather phenomena
- ✓ Many products have been developed using AHI observation data

Detection of Rapidly Developing Cumulus Area

- ✓ Statistical method is used for rapidly developing cumulus detection
- ✓ RDCA product has been operational all day using multiple observation bands data

Future Plans

- ✓ Domain extension of the RDCA product
- ✓ Improvement of the RDCA detection algorithm

Thank you for your kind attention

JMA mascot character "Harerun"